
Copyright 2012, Kyle Martin 1

USING NEAREST EDGE DISTANCE TO POLYGONS TO MINIMIZE THE IMPACT
OF HIGHER POINT DENSITIES ON POINT IN POLYGON ALGORITHMS

June 2012

Kyle Martin
Geospatial computer scientist

kyle.martin@mosaicsgis.com

Keywords: laser scanning, point clouds, point in polygon algorithm, nearest edge distance

Abstract:

Laser scanning has seen a significant increase in collection frequencies over the past several
years. Increased collection frequencies, yield higher point densities, larger point cloud datasets
and has significant impacts to the growth of algorithms. Algorithms that are marginally practical
now, will likely suffer impractical running times with point densities from newer or more
advanced sensor technologies. The point in polygon operation in particular plays a significant
role in point cloud applications and is impacted when point densities increase. In general, the
running time of a point in polygon algorithm will increase linearly with point counts. We
propose a nearest edge distance to polygon heuristic to minimize the increase in point tests as
point densities increase, and will show that the heuristic produces logarithmic growth in point
tests as point densities increase. Use of the nearest edge distance heuristic can be a very useful
tool for existing point in polygon algorithms to adapt more practically to higher point density
datasets that are common among newer laser scanning technologies.

Introduction

Laser scanning has seen a significant increase in collection frequencies over the past several
years. Increased collection frequencies yield higher point densities, and for some laser scanning
technologies such as vehicular (VLS) or terrestrial (TLS) laser scanning, the point densities can
be significantly higher than airborne (ALS) collections. VLS and TLS is generally <= 5 cm point
spacing and ALS is generally >= 0.5 m (Gong et al., 2012; Fowler et al., 2007; author
observation). Synthetically derived point clouds using highly overlapping high resolution
imagery (e.g., 3D vision) can produce even higher point densities (e.g., as low as 1 cm point
spacing) than TLS or VLS (Leberl et al., 2010). With these increased densities comes the need
to handle much larger point cloud datasets, and it is not inconceivable for these larger point
cloud datasets to render existing algorithms inadequate or impractical when the nominal point

Copyright 2012, Kyle Martin 2

spacing is cut in half or by a quarter for example (i.e., roughly a 4 and 16 fold increase in total
point counts respectively).

The point in polygon operation in particular plays a significant role in point cloud applications
and for example, is used to classify points within or out of hydrological areas, or buildings
(author observation). The invention of better point in polygon algorithms is of significant interest
in computational geometry, and is a basic operation in computer graphics. Various strategies and
solutions that range from ray tracing, counting edge intersections, to angular summations have
been invented that solves the point in polygon problem (Haines, 1994; Preparata, 1985; de Berg,
2008; Devadoss, 2011). Generally the solutions apply to convex only or to both concave and
convex polygons and the analysis of the algorithms range from O(log n) time (Preparata, 1985),
to O(n) time (Haines, 1994; Preparata, 1985). In all cases, n represented the number of vertices in
the polygon.

The implementation of a point in polygon algorithm is a foundational component to any point
cloud software system. And in order for the system to be practical, a quality point in polygon
algorithm must be implemented. It is not uncommon for the number of point in polygon tests to
be in the millions for large polygons that for example may exist in low lying hydrological areas.
These polygons are not only large in area but will have thousands of vertices, multiple and non-
contiguous parts, and likely a number of islands (i.e., donuts, or out areas).

Previous studies on point in polygon problems have focused primarily on the increasing
complexity of the polygon itself in terms of the numbers of vertices. The complexity of the
polygon ultimately defines the size of the problem, thus resulting in algorithms where
performance is directly related to the complexity (Haines, 1994; Walker, 1999). However, no
studies have been found by the author that focus on a constant polygon with increasingly higher
numbers of point in polygon tests as would be seen if the density of points over an area
significantly increased due to more advanced laser sensor technologies.

In this study, we assume that the complexity of the polygon would not be required or expected to
change as would be the case for many laser scanning update projects (author observation), and
that existing algorithms would incur a linear increase in the number of point in polygon tests to
handle the increase in point density. Consider the following statement that describes the total
point in polygon test running time for any given algorithm:

nP * T (1)

where nP is the number of points or in this case also the number of point in polygon tests, and T
is the running time for the point in polygon algorithm for a single test.

If nP were quadrupled, the total number of tests would increase linearly

[f(nP)] * T (2)

Copyright 2012, Kyle Martin 3

where f is the factor representing the increase in point counts.

The linear growth of the number of point tests can be reduced or the shape of the growth can be
changed if the number of point tests can be decreased or minimized and not allowed to grow at
the same rate as the point density. A reduction in the slope of the linear growth of point tests is
shown by

O(nPt*T) + (nP-nPt)[O(1)] (3)

where nPt equals the number of points tested. So as nPt approaches zero, a higher number of
points (i.e., approaching nP, total number of points) takes constant time (i.e., nP-nPt), to process
the point in polygon operation, thus reducing the total running time. The magnitude of nP - nPt
serves as a measure of how well the minimization of the number of point tests is performing.
Magnitudes closer to nP have better minimization functions because more constant time
operations are performed.

Here we propose a near distance to edge heuristic that minimizes the increase in nPt very
effectively and can be adopted by any algorithm that can be modified to provide a nearest
distance from any edge in the polygon to the test point.

Nearest Distance to Edge Heuristic

When performing a point in polygon test, the nearest edge distance (nD) from the polygon to a
test point (Tp) is compiled. nD and Tp can then be used to eliminate future tests and conclude
that a candidate point (Cp) has the same state or spatial relationship (q) to the polygon as the
previous test (i.e., Tp). Therefore we postulate the following proposition

(cTpD < nD) -> q (4)

where cTpD is the euclidean distance between Tp and Cp, and nD is the nearest edge distance
from Tp to the polygon boundary. If cTpD < nD then q is the same state or spatial relationship as
the one found for Tp.

Copyright 2012, Kyle Martin 4

Figure 1 shows a graphical demonstration of the proposition. The minimum edge distance of nD
says that no line segments of the polygon can be within region A. And if there are no polygonal
line segments within region A, the line segment TpCp cannot cross or intersect any line segment
of the polygon. Since no crossings can exist and using logic from the ray crossings point in
polygon test (O’Rourke 1998), any point within region A (i.e., cTpD < nD), cannot be a different
topological relationship than Tp. Thus no candidate points require testing within region A. Once
the distance between Tp and Cp is greater than or equal to nD, a new test is performed and Tp
and nD is reset.

The programmatic execution of figure 1 is illustrated in the prototype code

double nearDist = -1;
Point testPoint;
bool currentState;

for each (Point p in points) {
 if (nearDist < 0 || p.GetDistance(testPoint) >= nearDist) {
 currentState = polygon.PointIn(p,&nearDist);
 testPoint = p;
 }
 //do something with the state
}

A simple scenario can show the increase in nPt (Eq. 3) as the point density increases is
logarithmic when using the nearest distance to edge heuristic. Consider the scenario in figure 2
with a single edge where each point is considered consecutively from the left to right. Using the

Figure 1: Schematic of the nearest distance to edge
heuristic proposition. No point within region A can
have a different topological relationship to the
polygon than the relationship that Tp has with the
polygon.

Copyright 2012, Kyle Martin 5

nearest distance to edge heuristic, the point tests are displayed with a black dot and a grey dot is
a point that is skipped

It is observed in figure 2b that each time the point spacing is cut in half one additional point test
is performed for each edge encountered. As nP increases to infinity (i.e., point spacing is halved
infinitely), the derivative of the function that determines nPt approaches zero. The simple case in
figure 2 suggests that a similar logarithmic growth curve for nPt would be observed using real
laser scanning and polygonal data.

Testing the nearest Distance To Edge Heuristic

To test the heuristic a real world polygon was chosen (NCFMP, 2012), and synthetically derived
points were created in the polygon’s area of interest. The polygon physiographically represents a
winding wide river/lake polygon and serves as a practical and realistic challenge to the nearest
distance heuristic and is shown in figure 3.

Figure 2: Moving from left to right, points that are tested (black circles), and skipped (grey
circles) using the heuristic. Point spacing is cut in half in figure 2b and results in one
additional point test displayed as a black triangle.

Figure 3: The polygon used to test the nearest
distance heuristic.

Copyright 2012, Kyle Martin 6

An adequate series of point cloud datasets with increasing point densities was not available to the
author. Instead, synthetically generated points were used in the test. If a series of actual point
cloud datasets with increasing point densities were to be studied, it would be anticipated that on
average there would be a constant number more points between any two points of the lesser
density (e.g., higher frequency sensor captures an additional point(s) between points of a lower
frequency sensor), thus a similar pattern to figure 2 would result. Because of this similarity, the
results produced by synthetic or actual laser points would not differ significantly with respect to
any findings of the nearest distance to edge heuristic.

The synthetically generated points were generated on regularly spaced intervals and in a sinuous
scan line pattern to closely simulate the point ordering that would be encountered in actual point
cloud datasets (Fowler, 2007). Six datasets were synthetically generated with each consecutive
dataset representing quadruple the amount of data as the one before (i.e., point spacing is cut in
half). A program was built to iterate the points in the same fashion as the prototype code and the
number of point in polygon tests were tabulated as a ratio of nPt (Eq. 3) for dataset d (nPtd) to
nPt in the least dense dataset (nPt0). The ratio of nPt (nPtd/nPt0) was plotted against its
respective point density factor and is presented in figure 4.

To facilitate the examination of the growth of nPt as point density increased, nPtd was
normalized to the least dense dataset (i.e., nPt0). Figure 4 graphically shows that nPt was
approximately 1, 2, 5, 12, 27, and 59 for each dataset of increasing point density (1, 4x, 16x, 64x,
256x, 1024x). From these results we see that the slope of growth curve in nPt flattens as the

Copyright 2012, Kyle Martin 7

point density increases (i.e., the derivative of the function that determines nPt with respect to
point density approaches zero). Thus a logarithmic growth of nPt results as nP increase (Figure
4).

Discussion

The nearest distance heuristic is significantly sensitive to the ordering of the points. If the
sequential order of the points is such that the distance from one point to another (cTpD, Eq. 4) is
greater than or equal to nD (Eq. 4), the proposition is false resulting in a point test. Therefore the
magnitude of the minimization of tests is dependent on the ordering of the points. If the points
are perfectly spaced apart so that cTpD exceeds nD every time no benefit is gained, however the
more clustered the sequential movement of points are the better the heuristic performs in
minimizing nPt (Eq. 3). This assumption may render this heuristic less valuable when used with
technologies that do not produce a natural proximity sequence of the points. Laser scanning point
clouds exhibit this natural proximity sequence (Fowler, 2007). And to verify that the point order
of laser scanning data has no significant impact on the expected outcome of the heuristic, actual
laser scanning points (NCFMP, 2012) were classified as in or out of the polygon using the
nearest distance heuristic. Out of 540,268 points within the extent of the polygon, only 7.8% of
the points were tested. If the data increased in density, one would expect to see the number of
point in polygon tests to grow logarithmically in a similar fashion as figure 4.

Significant improvements to the heuristic can be made by employing spatial data partitioning
techniques that allow for quick elimination of large numbers of points such as those that would
exist in the nodes of a tree data structure (Rosen, 2007; Goodrich, 2004). Using the bounding
box of the node and its furthest distance to the previous test point, the containing points in the
nodes can be eliminated based on the near distance heuristic proposition.

Because the nearest distance heuristic requires only a nearest distance between test geometry and
an opposing geometry (nD, Eq. 4), and a calculation of the furthest distance between the test
geometry, and candidate geometry (cTpD, Eq. 4), an inherent flexibility exists that allows the
heuristic to be used by other geometry combinations and in other spatial relationships. For
example, one may want to classify the points within a distance of a polyline. By simply
modifying the nearest distance metric, one could quickly identify upcoming points as outside the
buffer, still within the buffer, or intermediate, requiring a test. The heuristic can also be extended
to work in 3d by returning 3d distances of 3d geometries rather than distances on the xy plane. A
promising use of the heuristic in 3d is for classifying points based on a topological relationship to
a surface (i.e., above, below, within a distance to, or on the surface).

Copyright 2012, Kyle Martin 8

Conclusion

As sensor technologies continue to provide higher point densities, algorithms must have a
reasonable growth potential. Algorithms that are marginally practical now, will likely suffer
impractical running times with point densities from newer or more advanced sensor
technologies. The point in polygon operation is a foundational computational geometry concept,
and is impacted significantly when point densities increase. The nearest distance to edge
heuristic provides a methodology to minimize the impact of increasing point densities on point in
polygon algorithms. The overall impact or running time is reduced by minimizing the number of
point tests performed using a nearest distance to edge heuristic. It is this nearest distance to any
polygon edge that allows for quick classification of any subsequent points not exceeding the
nearest edge distance. The number of point tests increase logarithmically as point density
increases. The reduction in the number of point tests as point counts increase allows the point in
polygon algorithm to adapt more reasonably to newer laser technologies and sensors that
produce significantly higher point densities than older or less advanced sensors.

Copyright 2012, Kyle Martin 9

References

De Berg, Mark, Otfried Cheong, Marc van Kreveld, Mark Overmars, 2008. Point location,
Computational Geometry: Algorithms and Applications (3rd ed.). Springer-Verlag, Berlin, (121 –
144).

Devadoss, Satyan L., and Joseph O’Rourke, 2011. Polygons, Discrete and Computational
Geometry. Princeton University Press, Princeton, New Jersey, (1 – 32).

Fowler, Robert A., A. Samberg, M. J. Flood, and T. J. Greaves, 2007. Topographic and
Terrestrial Lidar, Digital Elevation Model Technologies and Applications: The DEM Users
Manual (2nd ed.). Bethesda, Maryland: American Society for Photogrammetry and Remote
Sensing.

Goodrich, Micheal T., Roberto Tamassia, and David Mount, 2004. Trees and Search Trees, Data
Structures and Algorithms in C++. John Wiley and Sons, Inc., Hoboken, New Jersey (252 – 301,
411 – 475).

Gong, J., Q. Zhu, R. Zhong, Y. Zhang, and X. Xie, 2012. An efficient point cloud management
method based on a 3d R-tree, Photogrammetric Engineering & Remote Sensing, 78(4):373 - 383.

Haines, Eric, 1994. Point in Polygon Strategies, Graphics Gems IV, ed. Paul Heckbert, Academic
Press, (24-46).

Leberl, F., A. Irschara, T. Pock, P. Meixner, M. Gruber, S. Scholz, and A. Wiechert, 2010. Point
clouds: Lidar versus 3d vision, Photogrammetric Engineering & Remote Sensing, 76(10):1123 -
1134.

North Carolina Floodplain Mapping Program (NCFMP), 2012. Durham County, State of North
Carolina, USA. May 2012 < http://www.ncfloodmaps.com>

O’Rourke, Joseph, 1998. Search and Intersection, Computational Geometry in C (2nd Ed.).
Cambridge University Press, (239-245).

Preparata, F.P., and Shamos, M.I., 1985. Geometric searching, Computational Geometry.
Springer-Verlag, New York, (41-67).

Rosen, Kenneth H., 2007. Trees, Discrete Mathematics & Its Applications (6th ed.). McGraw-
Hill, New York (627 – 687).

Walker, Robert J., and Jack Snoeyink, 1999. Practical Point in Polygon Tests Using CSG
Representations of Polygons. Technical Report TR – 99 – 12. Department of Computer Science,
University of British Columbia.

